Group Targets Tracking Using Multiple Models GGIW-CPHD Based on Best-Fitting Gaussian Approximation and Strong Tracking Filter

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Target Tracking Using an Improved Gaussian Mixture CPHD Filter

The cardinalized probability hypothesis density (CPHD) filter is an alternative approximation to the full multi-target Bayesian filter for tracking multiple targets. However, although the joint propagation of the posterior intensity and cardinality distribution in its recursion allows more reliable estimates of the target number than the PHD filter, the CPHD filter suffers from the spooky effec...

متن کامل

Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices

For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. ...

متن کامل

An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets

We describe a Markov chain Monte Carlo based particle filter that effectively deals with interacting targets, i.e., targets that are influenced by the proximity and/or behavior of other targets. Such interactions cause problems for traditional approaches to the data association problem. In response, we developed a joint tracker that includes a more sophisticated motion model to maintain the ide...

متن کامل

Object Tracking Based on Parzen Particle Filter Using Multiple Cues

Particle filtering provides a general framework for propagating probability density functions in non-linear and non-Gaussian systems. However, generic particle filter (GPF) is based on Monte Carlo approach and sampling is a problematic issue. This paper introduces a parzen particle filter (PPF) which uses a general kernel approach to better approximate the posterior distribution rather than Dir...

متن کامل

Moving Objects Tracking Using Statistical Models

Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Sensors

سال: 2016

ISSN: 1687-725X,1687-7268

DOI: 10.1155/2016/7294907